
Qt Introduction
A cross-platform application and UI framework

Red Hat

Jaroslav Reznik

February 10, 2011



Copyright © 2011 Jaroslav Reznik, Red Hat.
This work is licensed under a Creative Commons Attribution 3.0
Unported License (CC-BY).



Part I

Introduction



Section 1

Welcome and introduction



Welcome and introduction

Agenda

1 Welcome and introduction

2 Qt and Trolltech goes Nokia...



Welcome and introduction

About me

Software Engineer @Red Hat Czech, Brno, responsible for:

Qt and KDE maintenance and development,
System configuration tools and Matahari

Active in several open source communities.

Fedora (Board Member)
KDE
Linux v Brně
Openmobility

Certified to be Qt ;-)



Section 2

Qt and Trolltech goes Nokia...



Qt and Trolltech goes Nokia...

What is Qt

Qt is

a cross-platform,

application and UI framework developed by Nokia,

dual licensed under LGPL v2.1 (with exceptions) and Qt
Commercial Developer License,

and (mostly) C++ based (with bindings for Java, Ruby,
Python...).



Qt and Trolltech goes Nokia...

Brief history

Current version is Qt 4.7 (4.0 released June 28, 2005)

Developed by Trolltech, now by Nokia

FreeQt - QPL - GPL v2 - LGPL v2.1 (and GPL v3) with
optional Qt Commercial Developer License.



Qt and Trolltech goes Nokia...

Platforms support

Official support for

Linux/X11 and embedded devices (even Wayland in progress),
Windows, Windows CE/mobile,
Symbian,
Mac OS X.

Experimental for

Android,
WebOS,
Amazon Kindle,
OpenSolaris,
Haiku,
OS/2,
and even iOS (iPhone).



Qt and Trolltech goes Nokia...

Modularity



Part II

Qt Development



Section 3

Main concepts



Main concepts

Qt as framework

Qt is not just a library!
Great documentation.
STL replacement.
Modules for nearly everything, not GUI only!
Support.

Nokia Qt SDK vs Qt SDK ;-)

Best practices

Try to avoid mixing Qt code with STL one as Qt has a great
offering for most common operations and containers! (But it’s still
possible).



Main concepts

Qt as framework

“It’s fast, easy to understand, the syntax is clear, and
you’ll never regret it! You think about something, simply
imagine what the object may look like, and you can be
sure it exists in the Qt SDK with that name! It’s pretty
awesome. :D”

Vincent Bénony, Arobas Music as quoted in “How Qt can turn you into a guitar

maestro” by David Stone; June 2010



Main concepts

MOC and C++ extensions

MOC stands for meta object compiler and handles Qt’s C++
extensions like

signals and slots mechanism for inter-object communication,
runtime type information,
and the dynamic property system.

MOC is preprocessor.

Introduces new keywords - emit (Q EMIT), foreach
(Q FOREACH)

Parses C++ source codes and for every class with Q OBJECT
macro definition prepares C++ source code that’s finally
included into original code.

Best practices

Use QMake buildsystem or use automoc4 for CMake based
projects.



Main concepts

QObject and Q OBJECT macro

The QObject class is the base class of all Qt objects.

QObjects are organized in object trees:
set a parent objects (calls insertChild() of parent, visible in
parent’s childrens() list,
parent takes ownership (children object is automatically
deleted in parent’s destructor).

Every object has an object name(), can report its className()
and class that inherits().

QObject can receive and filter events, has basic timer support.

Best practices

Do not use Q OBJECT macro if you don’t need it (signals,
properties etc.).

It’s strongly recommended to use QObject together with
Q OBJECT macro.



Main concepts

Example Q OBJECT

Class inherits QObject

class MyClass : public QObject
{

Q_OBJECT

public:
MyClass(QObject *parent = 0);
~MyClass();

signals:
void mySignal(int);

public slots:
void mySlot(int);

};



Main concepts

Signals and slots

Communication between objects.

MOC and Q OBJECT macro.

Signals and slots are typesafe (in opposit to callbacks)!

Signal is emited (emit, Q EMIT).

Slot is a method called as reaction to emited signal.

Access rights - private, protected, public.

Connect signal and slot

// connect signal and slot
connect(&first, SIGNAL(mySignal(int)),

&second, SLOT(mySignal(int)));

// emit signal
emit mySignal(some_value);



Main concepts

Signals and slots



Main concepts

Buildsystem

QMake is recommended and default Qt build system.

Generates Makefiles, Visual Studio projects...

Qt is very well supported in CMake.

Classic Makefiles - moc, linkage etc.



Section 4

UI design



UI design

Widgets

All Qt widgets inherit QObject.

Widgets base class is QWidget.

Widget receives events (mouse, keyboard etc.) and paints
itself.

Widget without parent widget is window (QMainWindow,
QDialog etc...).

Styles using stylesheets (CSS inspired).



UI design

Layouts

Layouts of child widgets.

Positioning of child widgets.
Sensible sizes (default, minimum) for windows.
Resize handling.

Horizontal, vertical and grid layouts.

Custom layout managers.

Qt Designer.



UI design

Graphics View Framework

2D graphical items and view framework.

BSP (Binary Space Partitioning) tree

Large scenes visualisation.

Model-view design patter design.

QGraphicsScene as a model of QGraphicsItems objects. It acts
as controller too.
QGraphicsView as a view widget to visualize scene.

Support for:

Zooming and rotation, printing, drag&drop, cursors,
animations, OpenGL rendering.

Even widgets and dialogs can be embedded
(QGraphicsWidget or native widgets!).



UI design

Qt Quick

Declarative UI design

QML as a language

Analogy in HTML + CSS or Edje

Logic in embedded JavaScript or C++ (Qt Declarative)

Uses Qt C++ reflection, properties bindings

Designers can mockup UI directly in QML

Rich interfaces using Animation Framework and State
Framework

Supported in Qt 4.7 and latest Qt Creator (designer)



UI design

Qt Quick Example

Hello Qt Quick (qmlviewer hello.qml)

import Qt 4.7

Rectangle {
id: myRectangle
width: 500
height: 400

Text {
text: "<h1>Hello Qt Quick</h1>"
color: "white"
x: 100; y: 100

}

color: "blue"
}



Part III

Tools



IDEs

Qt Creator by Nokia

KDevelop



Support tools

Qt Assistant - documentation viewer system.

Qt Linguist - internationalization tools.

Qt Designer - GUI designer.

Qt Simulator - emulates Maemo/MeeGo/Symbian phones.



Part IV

Qt in use



KDE

Multi-platform desktop environment written mostly in C++
and Qt



MeeGo

Mobile platform
Netbooks, handhelds, cell phones, in-vehicle device, TVs User
Experiences

by Nokia and Intel under the Linux Foundation hood
Qt based MeeGo Touch Framework

but platform contains Gtk+ and Clutter too
Based on Fedora (RPM) with OpenSUSE Build Service in use

but optimized for embedded devices, small footprint

First MeeGo devices expected this year??? (N9?)
QtMobility (Symbian supported)



Other open source software

VLC

MythTV

Arora browser

Amarok

Psi



Proprietary/commercial software

Lot of commercial software is developed in Qt.

Skype for Linux

Google Earth

Autodesk Maya

Guitar Pro 6



Links

http://qt.nokia.com/



The end.
Thanks for listening.


	Introduction
	Welcome and introduction
	Qt and Trolltech goes Nokia...

	Qt Development
	Main concepts
	UI design

	Tools
	Qt in use

