
Matahari and FMCI
Remote and local APIs for Systems Management and
Configuration

Red Hat

Jaroslav Reznik, Perry Myers and Andrew Beekhoff, based on
original Matahari slides

February 10, 2011



Copyright © 2011 Jaroslav Reznik, Perry Myers and Andrew
Beekhoff, based on original Matahari slides, Red Hat.
This work is licensed under a Creative Commons Attribution 3.0
Unported License (CC-BY).



Part I

Introduction



Section 1

Welcome and introduction



Welcome and introduction

Agenda

1 Welcome and introduction



Welcome and introduction

About me

Software Engineer @Red Hat Czech, Brno, responsible for:

Qt and KDE maintenance and development,
System configuration tools.

Active in several open source communities.

Fedora
KDE
Linux v Brně
Openmobility



Matahari stands for Remote and local APIs for Systems
Management and Configuration

FMCI stands for Fedora Management and Configuration
Infrastructure

Same goal, different approaches led to merge



Welcome and introduction

Goals

Collection of generically useful APIs accessible over a remote
and local interfaces via a collection of Agents

Framework for adding small set of Agents and APIs

Provide easy extensibility for new Agents and APIs

Cross Platform: Linux (Fedora) / Windows

Can be extended to additional OSes and Distros

Can be used on virtualized guests and bare metal hosts



Welcome and introduction

Use cases

Provide Guest Introspection / Control for

Cloud Deployments
Virtual Machine Management Environments
High Availability of Virtual Machines

General OS Management

General purpose local / remote systems management (FMCI /
system-config-* tools)
Integration with tools like kickstart / Puppet for post boot
configuration (appliance / cloud models)



Welcome and introduction

General usage



Welcome and introduction

Agents

Agent is a

QMF agent, which is a daemon that runs and exposes a QMF
model to a qpid bus
DBus agent, which is a daemon that runs or activated on
demand and exposes it’s interface on DBus system bus

Matahari agents provide

methods invocation
properties and statistics (QMF)
events

Any agent using QMF, DBus or both could be a Matahari
agent

Agents are dumb, policies are driven via external management
infrastructure

Agents may run as a standalone agents, no need for the whole
Matahari stack and can be packaged and shipped separately



Welcome and introduction

Functional areas

Host – Hardware identification

Net – add, remove, start, stop and query network interfaces

Services – start, stop, monitor, query services

Logging – retrieve application and system logs by data and
filter

Configuration – read, write, query configuration files

User – add, remove, update and query users and groups

Storage – mount / unmount filesystems, reporting

Applications / Packages – add, remove, query installed and
available packages

any other future agents???



Welcome and introduction

Limited scope!

yes but we don’t want agents for agents to be in Matahari,
functionality driven by concrete needs instead of imagined
future functionality
For example:

Matahari will provide APIs for installing packages and files,
but...
It is up to server-side tools like Spacewalk and Puppet, to
aggregate these capabilities into a centralized management or
provisioning solution
Matahari will provide APIs for starting / stopping / querying
services, but...
Matahari contains no logic for when those operations should
occur
This is the role of a centralized management server (eg. a
cluster or cloud management engine)

This is where Matahari meets FMCI, the high level API for
the local management



Welcome and introduction

Let’s Not Reinvent the Wheel

API reuse, not development

Whenever possible we simply expose an existing stable API via
a QMF Model and DBus interface

Examples:

sigar – Library of cross platform host management APIs
augeas – Granular configuration management
libvirt – virtualization management for Hosts

libvirt-qpid is effectively a Matahari Agent, though separate
from the core Matahari packages



Part II

Architecture



Transports

QMF is an object modeling framework that layers on top of
AMQP / Qpid

DBus is a message bus system for interprocess communication

Qpid default transport is over TCP

AMQP / virtio-serial used for guest to host comms

Additional transport types could be integrated into Qpid
project

Remote management servers would be written as QMF
Consoles or REST clients



Independent agents

Functionality is split up into multiple agents

SELinux
Simplifies bug-fixing and testing
Allows for pluggable architecture
Agents are written to be deployed / used independently

Each agent contains a set API functions

actual implementation in shared C library, then exposed via
QMF Model (C++) and DBus (C)



Cross platform

Sigar libraries used to provide cross-platform and
cross-distribution APIs

mingw32 used to cross-compile windows binaries from Linux

Integrates into existing distribution build chains
No need for proprietary build tools
Avoids most licensing issues for shipping code compiled by
Microsoft native tools



Authentication and Policies

For QMF (Qpid broker)

Access to bus is restricted, policies are solved on QMF level

DBus

System bus is open, PolKit 1 is used to authorize actions



Why Qpid and DBus?

For QMF (Qpid broker)

Open and Standards based bus (AMQP)
Cross platform
Reliable, Fast and Secure

DBus

De facto standard messaging bus on Linux
DBus and PolKit 1 solution preferred on desktops for system
configuration tools
Easy to use, running on nearly all Linux based systems, not
need to setup broker



Part III

Matahari in use



Status

We are ready to merge DBus branch to master

Host, Network and Services APIs working on Fedora and
Windows

Windows installer built in Fedora



Roadmap

Inclusion into Fedora 15

Initial Use Cases

Cloud Guest Agent for Aeolus (Cloud Engine) Project
LRM (Local Resource Manager) replacement for Pacemaker
Ricci replacement for Fedora Cluster Stack

Future Agents: storage, user management, packaging and
generic configuration interface (Augeas - Radek Novacek)



Links

Qpid/QMF – http://qpid.apache.org

FMCI – http://www.fedora.redhat.com/wiki/Features/FMCI

Hyperic Sigar – http://sourceforge.net/projects/sigar/



The end.
Thanks for listening.


	Introduction
	Welcome and introduction

	Architecture
	Matahari in use

